If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.03x^2+1.53x=0
a = -0.03; b = 1.53; c = 0;
Δ = b2-4ac
Δ = 1.532-4·(-0.03)·0
Δ = 2.3409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.53)-\sqrt{2.3409}}{2*-0.03}=\frac{-1.53-\sqrt{2.3409}}{-0.06} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.53)+\sqrt{2.3409}}{2*-0.03}=\frac{-1.53+\sqrt{2.3409}}{-0.06} $
| 1(1.2r-4.8)=27.2 | | 0.5x=5x+11 | | 25x+2=5 | | 89-x=2x+17 | | 4/5=7/8x-1/5 | | 4/5x+2x=28 | | 2w+2(3w-2)=28 | | 8(4p+1)=32p+1 | | 14x=7x2 | | 769.99-(769.99x)=449.79 | | 8(n-9)=96 | | 4-(3x)=19 | | 2x+15+4x-20=180 | | 550.54-(550.54x)=449.79 | | 769.99-(769.99x)=550.54 | | 9/x=8/48 | | 1136-(1136x)=760 | | 60=(-u)+185 | | 56-v=163 | | x-(0.17x)=84.62 | | .5x+x+2x=102 | | 280-u=188 | | x(.07)=200 | | 3(v+5=33 | | 3w+(3w+1)=34 | | 7=6u+u | | 64=13x-5x | | y=√4–2 | | 3x+(3x+1)=34 | | 6+3x=(-15) | | x+(0.17x)=84.62 | | -53=x/2 |